HURLSTONE AGRICULTURAL HIGH SCHOOL

MATHEMATICS – EXTENSION TWO

2009 HSC

ASSESSMENT TASK 1

Examiners ~ G Huxley, G Rawson GENERAL INSTRUCTIONS

- Reading Time 3 minutes.
- Working Time 40 MINUTES.
- Attempt **all** questions.
- All necessary working should be shown in every question.
- This paper contains two (2) questions.

- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators may be used.
- Each question is to be started on a new piece of paper.
- This examination paper must **NOT** be removed from the examination room.

STUDENT NAME:	
TEACHER:	

QUESTION ONE 18 marks Start a SEPARATE sheet

- (a) Let z = 1 + 2i and $\omega = 1 + i$. Find, in the form x + iy,
 - (i) $z \omega$
 - (ii) $z \overline{\omega}$
 - (iii) $\frac{1}{\omega}$
- (b) z has modulus r and argument θ . Find in terms of r and θ the modulus and argument of:
 - (i) z^2
 - (ii) $\frac{1}{z}$ 1
 - (iii) iz
- (c) Find all pairs of integers x and y that satisfy $(x+iy)^2 = 24+10i$
- (d) Consider the equation $z^2 + az + (1+i) = 0$ Find the value of a, given that i is a root of the equation.
- (e) It is given that two of the roots of $P(z) = z^3 + pz^2 + qz + 32$ are -2 and 4i. If it is known that p and q are real numbers, state the third root of P(z), giving a reason for your answer
- (f) Let z = -2 + 3i
 - (i) Evaluate \bar{z} . Verify that $z \bar{z}$ is real.
 - (ii) Use $\frac{1}{z} = \frac{\overline{z}}{z\overline{z}}$ to find $\frac{1}{z}$ in the form a + bi, where a and b are real.
- (g) Simplify $\frac{\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)}{\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)}$

QUESTION TWO 18 marks Start a SEPARATE sheet

- (a) By considering the complex number z = x + iy in the Argand plane, sketch the locus Of the following on separate Argand diagrams.
 - (i) $\arg z = \frac{\pi}{3}$
 - (ii) $\arg \overline{z} = \frac{\pi}{3}$
 - (iii) $\arg(-z) = \frac{\pi}{3}$
- (b) Let $w = r(\cos \phi + i \sin \phi)$ where ϕ is an acute angle. With the aid of a suitable diagram, or otherwise:
 - (i) Show that the distance between w and \overline{w} in the complex plane is $2r\sin\phi$
 - (ii) Find $|w + \overline{w}|$ in terms of r and ϕ .
- (c) Sketch the region of the complex plane for which the complex number z = x + iy has a positive real part and $|z + 3i| \le 2$.
- (d) Sketch the region defined by $1 < \left| z \left(1 + i\sqrt{3} \right) \right| < 2$ and $0 \le \arg z \le \frac{\pi}{3}$

Question 2 continued on next page...

(e) In the Argand diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number ω .

- (i) What complex number corresponds to the vertex *C*?
- (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC?

1

2

(f) The diagram below shows the locus of points z in the complex plane such that $\arg(z-3) - \arg(z+1) = \frac{\pi}{3}$.

This locus is part of a circle. The angle between the lines from -1 to z and from 3 to z is θ , as shown.

Copy this diagram into your Writing Booklet

- (i) Explain why $\theta = \frac{\pi}{3}$
- (ii) Find the centre of the circle.

Question No. 1 Solutions and Marking Guidelines

Outcomes Addressed in this Question

utcome	Solutions	Marking Guidelines
(a)	(i) $z\omega = (1+2i)(1+i)$ $= -1+3i$	1 mark: Correct answer
	(ii) $z \overline{\omega} = (1+2i)(1-i)$ = $3+i$	1 mark: Correct answer
	(iii) $\frac{1}{\omega} = \frac{1}{1+i} \times \frac{1-i}{1-i}$ $= \frac{1-i}{2}$	1 mark: Correct answer
(b)	(i) mod $(z^2) = (\text{mod } z)^2 = r^2$ $\arg(z^2) = 2 \arg(z) = 2\theta$	1 mark: Both mod and arg correct.
	(ii) $\operatorname{mod}\left(\frac{1}{z}\right) = \frac{1}{\operatorname{mod}(z)} = \frac{1}{r}$	1 mark: Both mod and arg correct.
	$\arg\left(\frac{1}{z}\right) = -\arg(z) = -\theta$	
	(iii) mod $(i z) = \text{mod } (i) \text{ mod } (z) = r$ $\arg (iz) = \arg (i) + \arg (z) = \frac{\pi}{2} + \theta$	1 mark: Both mod and arg correct.
(c)	If $(x+iy)^2 = 24+10i$	3 marks: Correct solution.
	Then: $x^2 - y^2 = 24$ (1) 2xy = 10(2)	2 marks: Solution with one error when calculating the pairs required.1 mark: Correct pair of simultaneous
	Solving simultaneously for real values of x and y gives:	equations.
	(x,y)=(5,1)or(-5,-1) i.e: $x+iy=\pm(5+i)$	
	i.e. $x + iy = \pm (5 + i)$	
(d)	$P(i)=i^2+ai+(1+i)=0$	2 marks: Correct solution.
	$i(a+1) = 0$ $\therefore a = -1$	<u>1 mark:</u> Substitution of <i>i</i> followed by son correct simplification.

(e)	$3^{\text{rd}} \text{ root} = 4i$	1 mark: Need to name all three components of the solution shown.
	Complex roots are in conjugate pairs,	of the solution shown.
	since all coefficients are real.	
(f)	$\overline{z} = (-2+3i)(-2-3i)$	2 marks: Correct solution.
	(i) $=(-2)^2 - (3i)^2$ = 13	<u>1 mark:</u> Correct conjugate and significant progress towards solution.
	which is real.	
	$(ii) \frac{\overline{z}}{z\overline{z}} = \frac{-2 - 3i}{13}$	2 marks: Correct values for a and b. (Correct from answer to (i))
	$\therefore a = \frac{-2}{13}, b = \frac{-3}{13}$	<u>1 mark:</u> 1 of the 2 values correct.
(g)	$\frac{\left(cis\frac{5\pi}{12}\right)\left(cis\frac{3\pi}{12}\right)}{\left(cis\frac{2\pi}{3}\right)} = cis\left(\frac{5\pi}{12} + \frac{3\pi}{4} - \frac{2\pi}{3}\right)$	2 marks: Correct answer, fully simplified. 1 mark: Correct application of sum and difference of arguments.
	$= cis\left(\frac{\pi}{2}\right)$ $= i$	or: correct simplification after 1 error in initial calculation.
	$=\iota$	